104 research outputs found

    The Morris-Lecar neuron model embeds a leaky integrate-and-fire model

    Get PDF
    We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a leaky integrate-and-fire (LIF) model prior to firing. A new model constructed from a radial OU process together with a simple firing mechanism based on detailed Morris-Lecar firing statistics reproduces the Morris-Lecar Interspike Interval (ISI) distribution, and has the computational advantages of a LIF. The result justifies the large amount of attention paid to the LIF models.Comment: 19 pages, 6 figure

    On criticality for competing influences of boundary and external field in the Ising model

    Get PDF
    Consider the Gibb's measures μΛ(1/h),-,s (defined below) of the Ising model, in a box Λ(l/h) in Zd with side length 1/h, with external field s and negative boundary condition at a temperature T B2(T), the limit is μ+. This says that the negative boundary conditon dominates in the limit when B B2(T). The question, then, is whether there exists a critical value B0 = B0(T) = B1(T) = B2(T) for all T B0. In the case of d = 2, this question was completely solved by Schonmann and Shlosman (1996), using large deviation results and techniques. For higher dimensions, Greenwood and Sun (1997) ([GS] hereafter) proved the criticality of a certain value B0 for all T B0. In [Sch], the main results are about the relaxation time of a stochastic Ising model in relation to an external field h. He shows that the relaxation time blows up when h ↘ 0 as exp(λ/hd-1). In fact he obtains upper and lower bounds for λ = λ(T), which are derived from his B1(T), B2 (T) and his estimate of the spectral gap of the generator of the evolution. One might hope to obtain a critical value of λ using Schonmann's methods and the critical value B0. This indeed again gives bounds for λ but not a critical value. A reason is that estimation of the spectral gap is involved

    Stochastic facilitation in the brain?

    Get PDF

    Moving forward in circles: challenges and opportunities in modelling population cycles

    Get PDF
    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore